Colony morphology and transcriptome profiling of Pseudomonas putida KT2440 and its mutants deficient in alginate or all EPS synthesis under controlled matric potentials

نویسندگان

  • Gamze Gulez
  • Ali Altıntaş
  • Mustafa Fazli
  • Arnaud Dechesne
  • Christopher T Workman
  • Tim Tolker-Nielsen
  • Barth F Smets
چکیده

Pseudomonas putida is a versatile bacterial species adapted to soil and its fluctuations. Like many other species living in soil, P. putida often faces water limitation. Alginate, an exopolysaccharide (EPS) produced by P. putida, is known to create hydrated environments and alleviate the effect of water limitation. In addition to alginate, P. putida is capable of producing cellulose (bcs), putida exopolysaccharide a (pea), and putida exopolysaccharide b (peb). However, unlike alginate, not much is known about their roles under water limitation. Hence, in this study we examined the role of different EPS components under mild water limitation. To create environmentally realistic water limited conditions as observed in soil, we used the Pressurized Porous Surface Model. Our main hypothesis was that under water limitation and in the absence of alginate other exopolysaccharides would be more active to maintain homeostasis. To test our hypothesis, we investigated colony morphologies and whole genome transcriptomes of P. putida KT2440 wild type and its mutants deficient in synthesis of either alginate or all known EPS. Overall our results support that alginate is an important exopolysaccharide under water limitation and in the absence of alginate other tolerance mechanisms are activated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions.

Biofilms exist in a variety of habitats that are routinely or periodically not saturated with water, and residents must integrate cues on water abundance (matric stress) or osmolarity (solute stress) into lifestyle strategies. Here we examine this hypothesis by assessing the extent to which alginate production by Pseudomonas putida strain mt-2 and by other fluorescent pseudomonads occurs in res...

متن کامل

Effects of carbazole-degradative plasmid pCAR1 on biofilm morphology in Pseudomonas putida KT2440.

Bacteria typically form biofilms under natural conditions. To elucidate the effect of the carriage of carbazole-degradative plasmid pCAR1 on biofilm formation by host bacteria, we compared the biofilm morphology, using confocal laser scanning microscopy, of three pCAR1-free and pCAR1-carrying Pseudomonas hosts: P. putida KT2440, P. aeruginosa PAO1 and P. fluorescens Pf0-1. Although pCAR1 did no...

متن کامل

Construction and characterization of nitrate and nitrite respiring Pseudomonas putida KT2440 strains for anoxic biotechnical applications.

Pseudomonas putida KT2440 is frequently used in biotechnical research and applications due to its metabolic versatility and organic solvent resistance. A major drawback for a broad application is the inability of the bacterium to survive and grow under anoxic conditions, which prohibits the production of oxygen-sensitive proteins and metabolites. To develop a P. putida strain, which is able to ...

متن کامل

The porous surface model, a novel experimental system for online quantitative observation of microbial processes under unsaturated conditions.

Water is arguably the most important constituent of microbial microhabitats due to its control of physical and physiological processes critical to microbial activity. In natural environments, bacteria often live on unsaturated surfaces, in thin (micrometric) liquid films. Nevertheless, no experimental systems are available that allow real-time observation of bacterial processes in liquid films ...

متن کامل

Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol.

BACKGROUND Given its high surplus and low cost, glycerol has emerged as interesting carbon substrate for the synthesis of value-added chemicals. The soil bacterium Pseudomonas putida KT2440 can use glycerol to synthesize medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHA), a class of biopolymers of industrial interest. Here, glycerol metabolism in P. putida KT2440 was studied on the level o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014